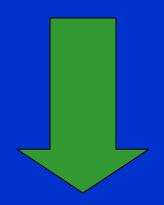
Biomineral-inspired Materials Chemistry

• Valuable insights into the scope of materials chemistry and the inorganic-organic interface

Biominerals


We have seen how minerals are highly controlled in structure, composition, shape and organization

These properties are directly related to many areas of materials chemistry

- > Inorganic-Organic composites
- Nanomaterials
- > Funsctional materials and interfaces
- > Oriented crystals
- Materials with complex morphologies
- Organized assemblies
- > Hierarchical materials

Biomimetics

- > Biological concepts
- > Biological molecules and matrices
- ➤ Biological systems

SYNTHESIS

Concepts and Strategies

- Supramolecular assemblies prior to biomineralization
- ➤ Interfacial molecular recognition
- Spatial confinement of chemical reactions and their materials products
 - Template-directed control of nucleation and architecture

- ➤ Vectorial regulation of biomineral morphogenesis and pattern formation
- Approaches to the morphosynthesis of inorganic materials in complex form

Synthesis in confined reaction spaces

The ability of supramolecular compartments such as phospholipid vesicles to control the spatial dimensions of many biominerals suggests that analogous systems should be available and exploitable in synthetic materials chemistry across a range of length scales

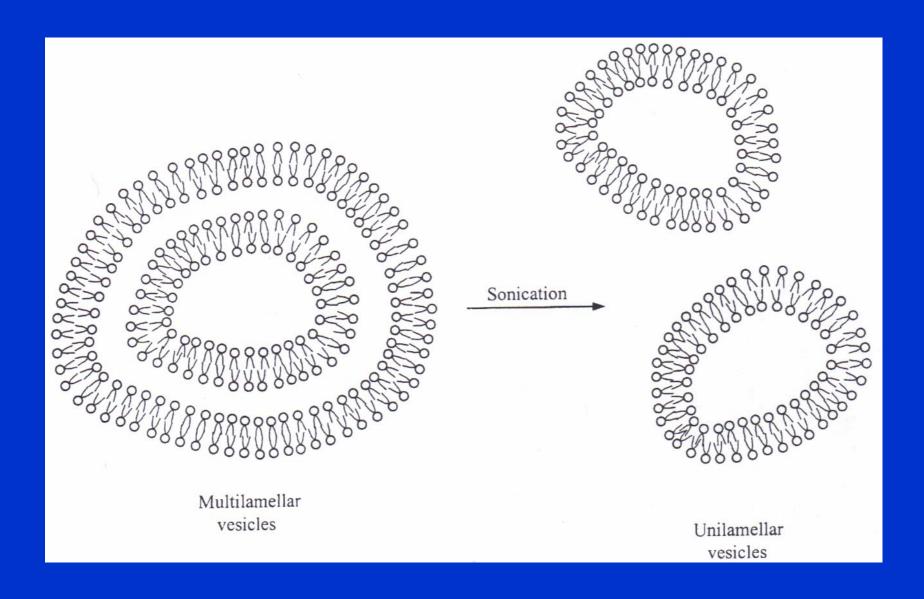
Examples

Organic boundaries in biomineralization and their biomimetic counterparts in spatially confined materials synthesis

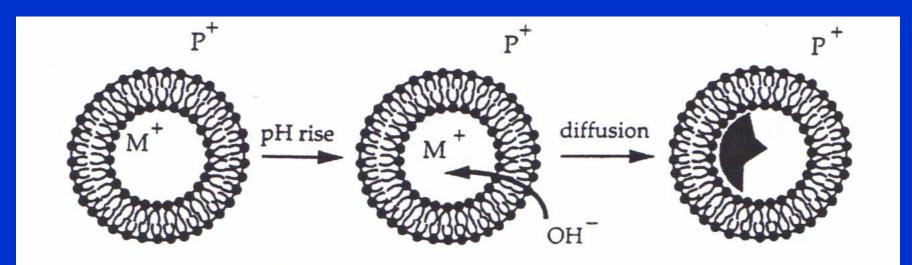
Biomineralization	Biomimetic synthesis
Phospholipid vesicles Ferritin Cellular assemblies Macromolecular frameworks	Synthetic vesicles Artificial ferritins Bacterial threads Polymer sponges

Examples

Table 9.3 Biomineral-inspired approaches to the synthesis of inorganic nanoparticles and composites in confined spaces

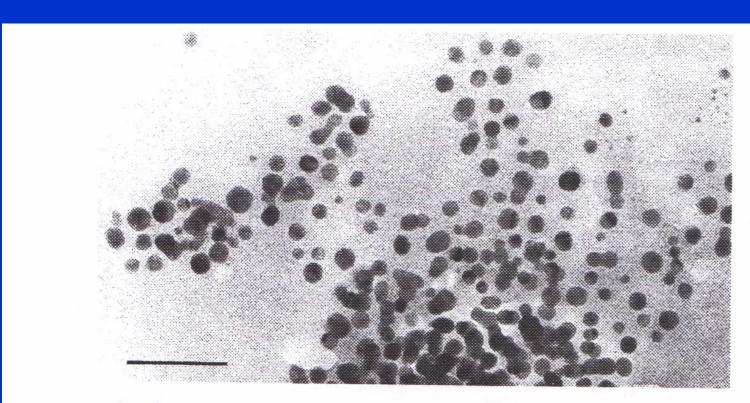

Approach	Product	System	Materials
Boundary-organized reaction spaces	Surfactant-coated clusters	Reverse micelles Microemulsions	CdS, BaSO ₄ Pt, Co, metal borides Fe ₃ O ₄ , CaCO ₃
	Membrane-bounded nanoparticles	Vesicles	Pt, Ag, CdS, ZnS Ag ₂ O, FeOOH, Fe ₃ O ₄ , Al ₂ O ₃ Ca phosphates
	Artificial proteins	Ferritin	MnOOH, UO ₃ , FeS, Fe ₃ O ₄ CdS
		Viroid cages	Tungstates
	2-D nanoparticle superlattices	Porous S-layers	Ta/W, CdS, Au
Internally organized extended structures	Mineral-organic mesostructures Bacteria-mineral fibres Polymer-mineral composites	Lipid bilayer films Multilamellar vesicles Bacterial threads Copolymer sponges Polyethylene oxide gels Collagen gels	CdS, Fe ₃ O ₄ SiO ₂ SiO ₂ , zeolites Fe ₃ O ₄ , TiO ₂ CdS Ca phosphates

Synthesis Vesicles

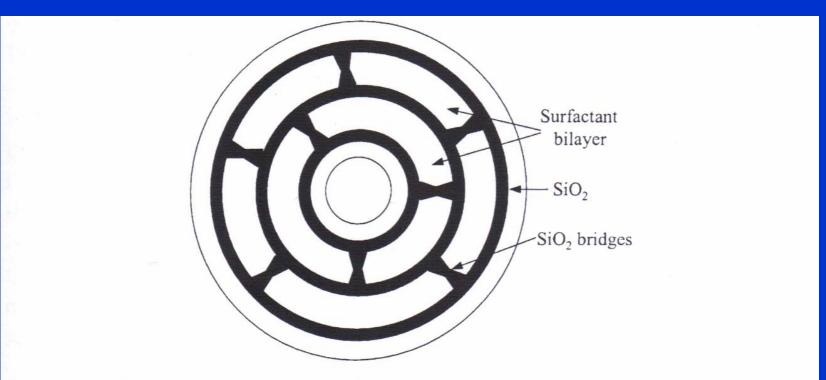

In the lab synthetic vesicles can be prepared by sonicating aqueous dispersions of phospholipid molecules, such as phosphatidyl choline

$$\begin{array}{c} O \\ \parallel \\ R-C-O-CH_2 \\ R'-C-O-CH & O \\ \parallel & \mid & \parallel \\ O & CH_2-O-P-O-CH_2-CH_2-N^+(CH_3)_3 \\ \end{array}$$
 Phosphatidyl choline

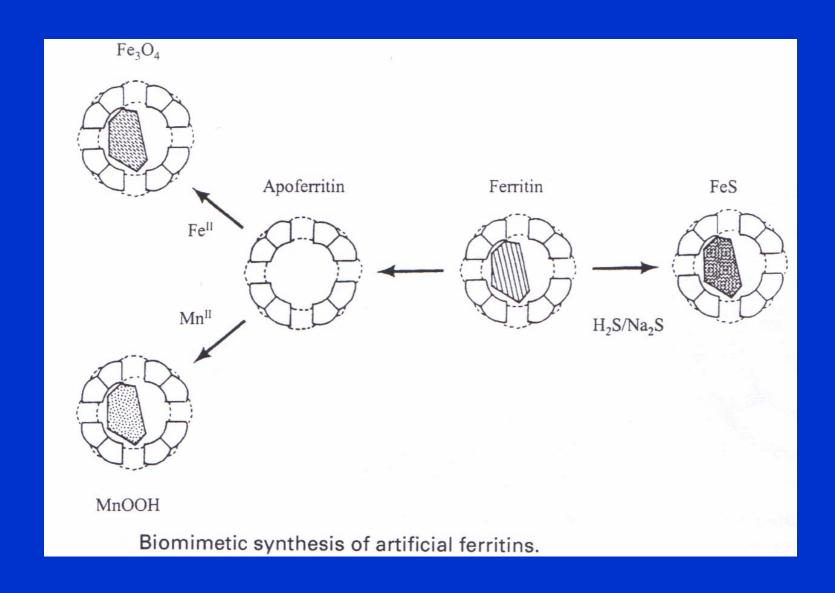
Multilamellar and Unilamellar Vesicles



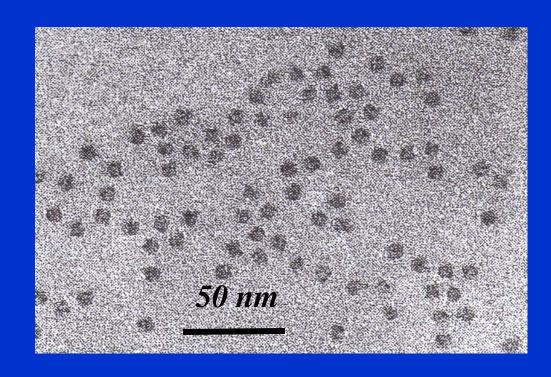
Formation of metal oxide nanoparticles


Formation of metal oxide nanoparticles within unilamellar vesicles. Metal cations (M⁺) are encapsulated and reacted with OH⁻ ions that diffuse through the bilayer membrane. Inert cations (P⁺) are required to maintain electroneutrality.

Formation of metal oxide nanoparticles


Ag₂O nanoparticles prepared inside phosphatidyl choline unilamellar vesicles. Scale bar, 75 nm.

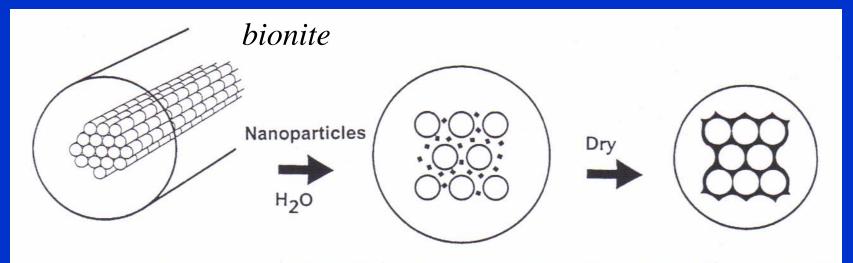
Organized nanostructures from mutilamellar vesicles



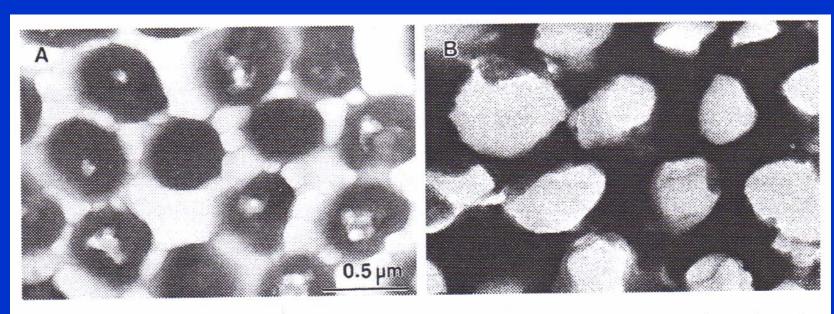
Silica mineralization in multilamellar vesicles and formation of an onion-like inorganic-organic nanocomposite.

Artificial Ferritins

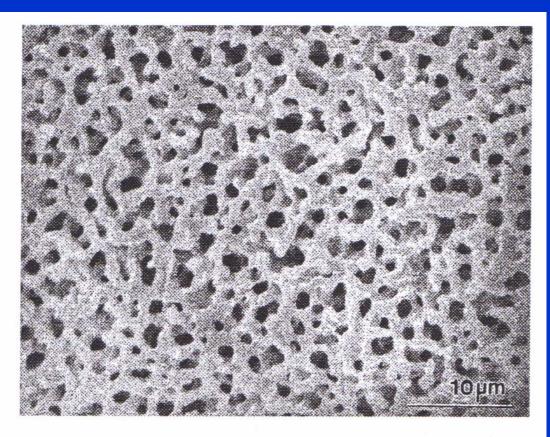
Artificial Ferritins for the synthesis of MnOOH


Bacterial Threads

Bacillus subtilis


Sectioned bacterial thread showing internal hexagonal superstructure of coaligned multicellular filaments. Scale bar, 10 μ m.

Bacterial threads for materials synthesis


Mineralization of bacterial superstructure using inorganic nanoparticles and reversible swelling.

Bacterial threads

Cross-section of bacterial thread: (A) before mineralization showing end-on view of the multicellular filaments and interfilament spaces; (B) after mineralization showing continuous silica walls between the entrapped filaments. Scale bar, 0.5 μ m in both micrographs.

Polymer Sponges

Polymer sponge. Scale bar, 10 μ m.

B
$$\begin{array}{c|c}
CH_2 - CH \\
\hline
CH_2 - CH \\
\hline
COOH
\end{array}$$

$$\begin{array}{c|c}
CH_3 \\
\hline
CH_2 - CH \\
\hline
CH_2 - CH \\
\hline
COOH
\end{array}$$

$$\begin{array}{c|c}
CH_2 - CH \\
\hline
COOH
\end{array}$$

$$\begin{array}{c|c}
CH_2 - CH \\
\hline
COOH
\end{array}$$

Copolymers: (A) styrene and acrylic acid; (B) 2-hydroxyethyl methacrylate and acrylic acid.

Template-directed materials synthesis

Table 9.4 Biomineral-inspired approaches to the organic template-directed synthesis of inorganic materials

Approach	Product	System	Materials
Nucleation on	Organized composites	β-Chitin/acidic macromolecules	CaCO ₃ , Ca phosphates
biomineral matrices		Cuttlebone β -chitin	SiO ₂
Nucleation on	Mineral-organic	Lipid tubules	Cu, Ni, Al ₂ O ₃ , Fe oxides, Au
3-D structures	cylinders/tubes	Viroid tubules	CdS, PbS, SiO ₂ , Fe oxides
3-D Structures	cymiders/tabas	Bacterial rhapidosomes	Pd
		Bacterial fibres	CaCO ₃ , CuCl, Fe oxides
thin films	Oriented crystals	Langmuir monolayers	NaCl, CaCO ₃ , BaSO ₄ , PbS
			CaSO ₄ , CuSO ₄
		Polyaspartate/polystyrene	CaCO ₃
	Surface coatings	Self-assembled monolayers	TiO ₂ , zeolites
		Polyacrylate films	Fe oxides, BaTiO ₃